top of page
Search

RTMO-ORT: A Tiny ONNX Runtime Wrapper for RTMO from MMPose - RTMO in Minutes

  • Writer: Namas Bhandari
    Namas Bhandari
  • Aug 30
  • 1 min read

RTMO-ORT inference — RTMO-M (COCO, 640×640).
RTMO-ORT inference — RTMO-M (COCO, 640×640).

I put together rtmo-ort, a tiny wrapper that runs RTMO (MMPose) with pure ONNX Runtime. No training stack, no giant dependencies—just install, grab the models, and run on an image, video, or webcam.

  • A small Python package with three CLIs: rtmo-image, rtmo-video, rtmo-webcam.

  • Presets for model size (tiny/small/medium/large) and dataset (coco/crowdpose/body7).

  • A helper script to download the ONNX models into the expected layout.

It’s meant for quick demos, PoCs, and handing someone a working pose script that “just runs.” Install & run (quick start)


Option A - pip (CPU):


pip install -U pip pip install rtmo-ort[cpu]

Option B - pip (GPU): pip install rtmo-ort[gpu]

Option C - Conda: conda create -n rtmo-ort python=3.9 conda activate rtmo-ort pip install -U pip pip install rtmo-ort[cpu]


Get the models (required):

Clone the repository from: https://github.com/namas191297/rtmo-ort Recommended (from repo root): ./get_models.sh

Manual:

Download the .onnx files from the GitHub Releases and place them under models/ with the expected layout:

mkdir -p models/rtmo_s_640x640_coco

curl -L -o models/rtmo_s_640x640_coco/rtmo_s_640x640_coco.onnx \

CLI:

Run webcam: rtmo-webcam --model-type small --dataset coco --device cpu

Run image: rtmo-image --model-type small --dataset coco --input assets/demo.jpg --output out.jpg

Run video: rtmo-video --model-type medium --dataset coco --input input.mp4 --output out.mp4

Why this helps

  • Low friction: skip framework setup when all you need is inference.

  • Portable: ONNX Runtime on CPU or GPU, works in minimal environments.

  • Practical defaults: sensible presets, optional flags when you need them.

Credits

All model and training credit goes to OpenMMLab / MMPose.This project is a thin runner on top of their work (Apache-2.0).

 
 
 

Comments


©2023 by Nammas Bhandari.

bottom of page